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Chiral phosphines, as ligands in transition metal complexes,
efficiently create asymmetric catalysts for enantioselective trans-
formations.1 However, chiral phosphines are expensive, and their
syntheses frequently require a resolution or are limited to the use
of starting materials derived from enantiopure natural products. An
alternative synthetic strategy might involve the enantioselective
transition-metal-catalyzed addition of a PsH bond to a CdC double
bond (eq 1).2

Although hydrophosphinations have proven valuable for the
synthesis of achiral or chiral phosphines (when involving stereospe-
cific reactions),3-7 methodologies for enantioselective P-H addi-
tions are limited. Among the few asymmetric catalyses, Pt0-
(MeDuphos) complexes catalyze hydrophosphinations of Michael
acceptors via P-H bond oxidative addition and olefin insertion,
but unfortunately the reaction’s enantioselectivity is low.8 Ad-
ditionally, lanthanide-catalyzed intramolecular hydrophosphinations
give chiral cyclic phosphines with good diastereomeric ratios.9

Interestingly, the mechanisms of lanthanide-catalyzed hydrophos-
phinations and hydroaminations appear to be closely related.10

We have recently described enantioselective intermolecular
hydroaminations of vinyl nitriles that are catalyzed by the dicationic
nickel complex [Ni(Pigiphos)(THF)](ClO4)2 ([1](ClO4)2) containing
the C1-symmetric trisphosphine Pigiphos (Scheme 1; the (R)-(S)-
enantiomer of Pigiphos was used exclusively).11,12

Preliminary studies suggested that coordination of the vinyl nitrile
to the dicationic NiII center activates its CdC bond toward 1,4-
addition of the amine. On the basis of this proposal, we speculated
that [1](ClO4)2 might also catalyze hydrophosphinations. Herein,
we report a new method for the preparation of a series of
enantioenriched (2-cyanopropyl)phosphines and present results that
implicate 1,4-conjugate addition for P-C bond formation.

Initially, we attempted the nickel-catalyzed addition of Cy2PH
(2a) to methacrylonitrile under conditions similar to those developed
for our hydroaminations (5 mol % [1](ClO4)2 in THF).12 After 1 h,
the 31P{1H} NMR spectrum of the reaction mixture displayed a
new singlet at-8.12 ppm. Unfortunately, the reaction did not
proceed to completion under these conditions even after extended
reaction times (<2 weeks). However, under optimized conditions
(methacrylonitrile as solvent and 10 mol % [1](ClO4)2), the reaction
is complete after ca. 5 h atroom temperature. Three multiplets (2.18,
1.48, and 1.44 ppm, 1 H each) in the1H NMR spectrum of the
product indicated the formation of the anti-Markovnikov addition
product Cy2PCH2CHMeCN (3a). The ee (65%) was determined
by coordination of3a to an enantiopure chiral Pd complex.8,13

We then surveyed the reaction of a few primary and secondary
phosphines with methacrylonitrile in the presence of [1](ClO4)2 at
room temperature. Ph2PH (2b, 10 equiv) forms Ph2PCH2CHMeCN
(3b) quantitatively, but with low ee (14%). Mes2PH does not react
(only starting material is detected by1H and 31P{1H} NMR
spectroscopy) after 2 weeks at room temperature, and the primary
phosphines CyPH2 and (1-MeCy)PH2 do not give isolable hydro-
phosphination products. The best results are obtained for the reaction
of methacrylonitrile andtBu2PH (2c, 98 equiv) to formtBu2PCH2-
CHMeCN (3c, 65% ee).

Noting that the bulky dialkylphosphines gave more promising
results, we focused on the effects of the counterion, solvent, and
temperature in the Ni-catalyzed reaction oftBu2PH and methacry-
lonitrile (Table 1). The enantioselectivities follow the trend F3CCH2-
OH < thf ≈ methacrylonitrile< acetone, and the use of [1](BF4)2

gives lower enantioselectivities than observed with [1](ClO4)2 at
room temperature (Table 1, entries 1-5). However, addition oft-
Bu2PH to a-78 °C acetone solution of [1](BF4)2 and methacry-
lonitrile affords3c in 84% ee (entry 6). The highest enantioselec-
tivity is obtained from [1](ClO4)2 in acetone at-25 °C (entry 7,
89% ee). The catalyst is highly active under these conditions, giving
600 turnovers after 48 h and 900 turnovers after 1 week (0.1 mol
% catalyst). Hydrophosphinations withiPr2PH or (1-adamantyl)2PH
to give 3d (49 turnovers, 24 h, 69% ee) or3e (100 turnovers, 96
h, 94% ee) are also optimal in acetone at-25 °C (Table 2).14

Although the Pigiphos ligand is sterically demanding, conversion
and enantioselectivity of the hydrophosphination are apparently
enhanced by bulky, nucleophilic phosphine substrates.

This suggests a pathway involving coordination of methacry-
lonitrile to the nickel center followed by nucleophilic attack of the
secondary phosphine. To investigate this possibility, methacryloni-‡ X-ray crystallographic studies.

Scheme 1

Table 1. Solvent, Counterion, and Temperature Effects on the
Reaction of tBu2PH and Methacrylonitrile Catalyzed by [1]2+

entry solvent counterion temp % ee

1 methacrylonitrile ClO4 rt 65
2 F3CCH2OH ClO4 rt 45
3 acetone ClO4 rt 77
4 thf BPh4 rt 67
5 acetone BF4 rt 50
6 acetone BF4 -78 °C f rt 84
7 acetone ClO4 -25 °C 89
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trile (1-10 equiv) was added to a mixture of Pigiphos and [Ni-
(H2O)6](ClO4)2 in THF-d8 to form [Ni(Pigiphos)(NCMeCCH2)]-
(ClO4)2 ([5](ClO4)2). The31P chemical shifts and coupling constants
for [5](ClO4)2 and the acetonitrile complex [Ni(Pigiphos)(NCCH3)]-
(ClO4)2 are similar, suggesting that in solution the methacrylonitrile
is coordinated to Ni via the nitrile nitrogen.15,16This bonding mode
is maintained in the solid state, as evidenced by the X-ray crystal
structure illustrated in Figure 1. In the dication [5]2+, the nickel
atom is bonded to its ligands in a distorted square planar geometry,17

in which the nickel dication and nitrogen atom of the nitrile are
displaced 0.33 and 1.15 Å, respectively, from a plane defined by
the three phosphorus atoms. Notably, the two axial faces of the
complex are distinguished by this displacement, and the methacry-
lonitrile ligand is sterically contained within a chiral environment
created by the Ph2P phenyl groups.17

Reaction of [5]2+ and R2PH (R ) Cy, Ph, tBu; 1-2 equiv) in
THF-d8 gives R2PCH2CHMeCN. Furthermore, yields and enanti-
oselectivities of hydrophosphination products from [1](ClO4)2 and
[5](ClO4)2 as catalysts are indistinguishable. These results suggest
that the dication [5]2+ is an intermediate in the catalytic cycle
(Scheme 2). Note that in this mechanism, P-C bond formation
produces a phosphonium ion and an axially chiral azaallenyl ligand
coordinated to the chiral [Ni(Pigiphos)]2+ fragment (i.e., two
diastereoisomers of typeA). Stereospecific proton transfer from
the pendant phosphonium to the NdCdCRR′ carbon of each
diastereoisomer generates theR-stereogenic center. Compound [5]-
(ClO4)2 is also an intermediate in the [1](ClO4)2-catalyzed asym-
metric hydroamination.12 Accordingly, there are similar solvent and
counterion effects in the hydroamination and hydrophosphination
reactions. Additionally, the absolute configuration of the major
enantiomer of hydroamination and hydrophosphination, respec-

tively, demonstrates that the sense of chiral induction is the same
in both reactions.15,17b

These similarities suggest that [Ni(Pigiphos)(L)]2+ complexes
may be able to catalyze the asymmetric addition of other E-H
nucleophiles to vinyl nitriles for the synthesis of highly enantioen-
riched organic compounds containing main group elements. Along
these lines, we are currently working to further develop the synthetic
utility of this class of asymmetric transformation.
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Table 2. [1](ClO4)2-Catalyzed Reaction of R2PH and
Methacrylonitrilea

entry phosphine turnover time (h) yield (%)b ee (%)

1c Cy2PH 10 8 71 70
2c Ph2PH 15 24 10 32
3d iPr2PH 49 24 not isolated 78
4d tBu2PH 100 8 97 89
5d Ad2PHe 100 96 95 94

a Catalyst loadings range from 1 to 10 mol %, either [1](ClO4)2 or
generated in situ from Pigiphos and [Ni(H2O)6][ClO4]2, and reactions were
performed at-25 °C. b Isolated yields are based on moles of the R2PH
starting material.c Reactions were performed in methacrylonitrile.d Reac-
tions were performed in acetone.e Ad ) 1-adamantyl.

Figure 1. ORTEP diagram of the dication of [Ni(Pigiphos)(NCMeCCH2)]-
(ClO4)2 ([5](ClO4)2). Hydrogen atoms are omitted for clarity.

Scheme 2. Proposed Catalytic Cycle
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